
Computer Architecture
 Programming the Basic Computer

CHAPTER EIGHT

MICROPROGRAMMED CONTROL

8.1. Introduction

In any digital computer, the function of the control unit is to initiate
sequences of microoperations. The number of different types of
microoperations that are available in a given system is finite.

Generally, control unit of a digital computer may be designed using one
of the following techniques:

1. Hardwired Control Unit

In this type, the control signals are generated by hardware using
conventional logic design techniques.

2. Microprogrammed Control Unit

In this type, the control variables stored in memory at any given time
can be represented by a string of 1's and 0's called a control word.
As such, control words can be programmed to perform various
operations on the components of the system.
Each word in control memory contains within it a microinstruction.
Generally, a microinstruction specifies one or more microoperations.
A sequence of microinstructions forms what is called a
microprogram.

Generally, a computer that employs a microprogrammed control unit will
have two separate memories:

1. The main memory

This memory is available to the user for storing programs. The user's
program in main memory consists of machine instructions and data.

2. The control memory

This memory contains a fixed microprogram that cannot alter by the
occasional user. The microprogram consists of microinstructions that
specify various internal control signals for execution of register
microoperations.

Computer Architecture
 Programming the Basic Computer

Each instruction initiates a series of microinstructions in control
memory. These microinstructions generate the microoperations
to:

1. Fetch the instruction from main memory.

2. Evaluate the effective address.

3. Execute the operation specified by the instruction.

4. Finally, return the control to the fetch phase in order to repeat

the cycle for the next instruction.

Figure 8.1 shows the general block diagram of a microprogrammed
control unit which assumed to be a ROM.

External

input

Control

word

Next-address information

F igure 8.1

The function of the control address register is to specify the address
of the microinstruction, while the function of control data register is to
holds the microinstruction read from memory.

The microinstruction contains a control word that specifies one or
more microoperations for the data processor. Once these
operations are executed, the control must determine the next address.
The location of the next microinstruction may be the one next in
sequence, or it may be located somewhere else in the control memory.
For this reason it is necessary to use some bits of the present
microinstruction to control the generation of the address of the next
microinstruction. The next address may also be a function of external
input conditions. While the microoperations are being executed, the
next address is computed in the next address generator circuit and then
transferred into the control address register to read the next
microinstruction.
Thus a microinstruction contains bits for initiating microoperations in the
data processor part and bits that determine the address sequence for
the control memory.

 Next

address

generator

Control Control

address memory

Register (ROM)

Control

data

Register

Computer Architecture
 Programming the Basic Computer

The next address generator is sometimes called a microprogram
sequencer, as it determines the address sequence that is read from
control memory.

Depending on the sequencer inputs, the address of the next
microinstruction can be specified in several ways:

1. By incrementing control address register by one.
2. Loading the control address register an address from control

memory.
3. Transferring an external address.
4. Loading an initial address to start the control operations.

The control data register holds the present microinstruction while the
next address is computed and read from memory. The data register is
sometimes called a pipeline register. It allows the execution of the
microoperations specified by the control word simultaneously with the
generation of the next microinstruction. This configuration requires a
two-phase clock, one clock applied to the address register and the
other to the data register.
The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-
address information are taken directly from the control memory.
It must be realized that a ROM operates as a combinational circuit, with
the address value as the input and the corresponding word as the
output. The content of the specified word in ROM remains in the output
wires as long as its address value remains in the address register. No
read signal is needed as in a random-access memory. Each clock pulse

will execute the microoperations specified by the control word also
transfer a new address to the control address register.
In the example that follows we assume a single-phase clock and
therefore we do not use a control data register, in this way the address
register is the only component in the control system that receives clock
pulses. The other two components: the sequencer and the control
memory are combinational circuits and do not need a clock.

The main advantage of the microprogrammed control is the fact
that once the hardware configuration is established; there should
be no need for further hardware or wiring changes. If we want to

establish a different control sequence for the system, all we need to do
is specify a different set of microinstructions for control memory
(i.e. different microprogram residing in control memory).

Computer Architecture
 Programming the Basic Computer

8.2. Address Sequencing

Each computer has a set of instructions; each instruction has its own
microprogram routine in control memory which generates the
microoperations that execute it.

When the computer is turned on, an initial address is loaded into the
control address register. This address usually presents the first address
of the microinstruction that activates the instruction fetch routine. The
fetch routine may be sequenced by incrementing the control address
register through the rest of its microinstructions. At the end of the fetch
routine, the instruction is loaded in the instruction register.

The next step is to determine the effective address of the operand. The
effective address computation routine in control memory can be
reached through a branch microinstruction, which is conditioned on the
status of the mode bits of the instruction. When the effective address
computation routine is completed, the address of the operand is

available in the memory address register.

The following step is to generate the microoperations that execute the
instruction fetched from memory. Each instruction has its own
microprogram routine stored in a given location of control memory.

The process that transforms the instruction code bits to an address in
control memory where the routine is located is referred as a mapping
process. Once the required routine is reached, the microinstructions that
execute the instruction may be sequenced by incrementing the control
address register, but sometimes the sequence of microoperations will

depend on values of certain status bits in processor registers.
Microprograms that employ subroutines will require an external
register to store the return address, since the return addresses cannot
be stored in ROM.

When the execution of the instruction is completed, control must return
to the fetch routine. This is accomplished by executing an unconditional
branch microinstruction to the first address of the fetch routine.

Computer Architecture
 Programming the Basic Computer

In summary, the address sequencing capabilities required in a control
memory are:

1. Incrimination of the control address register.
2. Unconditional branch or conditional branch, depending on

status bit conditions.
3. A mapping process from the bits of the instruction to an

address for control memory.
4. A facility for subroutine call and return.

Figure 8.2 shows a block diagram of a control memory and the
associated hardware needed for selecting the next microinstruction
address.

Each microinstruction in control memory contains:

1. A set of bits to initiate microoperations in computer registers.
2. A set of bits to specify the method by which the next microin-

struction address is obtained.

F igure 8.2

Computer Architecture
 Programming the Basic Computer

The diagram shows four different paths from which the control
address register (CAR) receives the address of the next
instruction.

1. By incrementer, which increments the content of the control
address register by one.

2. By branching; this is achieved by specifying the branch address in
one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific
status bit in order to determine its condition.

3. An external address via a mapping logic circuit is transferred into

control memory.
4. The return address for a subroutine is stored in a special register

whose value is then used when the microprogram wishes to
return from the subroutine.

 Conditional Branching

The branch logic of Fig. 8.2 provides decision-making capabilities in
the control unit.

In every digital system, the status conditions are special bits that
provide parameter information such as:

1. The carry-out of an adder.
2. The sign bit of a number.
3. The mode bits of an instruction.
4. Input or output status conditions.

The field which specifies a branch address in the microinstruction,
together with the status bits, controls the conditional branch decisions
generated in the branch logic.

The simplest way to implement the branch logic hardware is to test the
specified condition and branch to the indicated address if the
condition is met; otherwise, the address register is incremented.

This can be implemented using a multiplexer. For example, suppose that
there are eight status bit conditions in the system. Therefore, three bits in
the microinstruction are used to specify one of the eight status bit
conditions. These three bits provide the selection variables for the
multiplexer. If the selected status bit is in the 1 state, the output of the

Computer Architecture
 Programming the Basic Computer

multiplexer is 1; otherwise, it is 0. A 1 output in the multiplexer
generates a control signal to transfer the branch address from the
microinstruction into the control address register. A 0 output in the
multiplexer causes the address register to be incremented. In this
configuration, the microprogram follows one of two possible paths,
depending on the value of the selected status bit.

An unconditional branch microinstruction can be implemented by
loading the branch address from control memory into the control
address register via the multiplexer. This can be accomplished by
fixing the value of one status bit at the input of the multiplexer, so it is
always equal to 1. A reference to this bit by the status bit select lines
from control memory causes the branch address to be loaded into the
control address register unconditionally.

M apping of Instruction

A special type of branch exists when a microinstruction specifies a

branch to the first word in control memory where a microprogram
routine for an instruction is located. The status bits for this type of branch
are the bits in the operation code part of the instruction.

For example, suppose a computer with an instruction format as shown

in Fig. 8.3. four bits are specified for the operation code which specifies
up to 16 distinct instructions. Assume further that the control memory
has 128 words, requiring an address of seven bits. As mentioned
before, the control memory includes a microprogram routine for each
operation code that executes the corresponding instruction.

 Figure 8.3

Computer Architecture
 Programming the Basic Computer

One simple mapping process that converts the 4-bit operation code to
a 7-bit address for control memory is shown in Fig. 8.3. This mapping
consists of placing a 0 in the most significant bit of the address,
transferring the four-operation code bits, and cleaning the two least
significant bits of the control address register.

This provides for each computer instruction a microprogram routine
with a capacity of four microinstructions, if the routine needs more than
four microinstructions, it can use addresses 1000000 through 1111111.
If it uses fewer than four microinstructions, the unused memory
locations would be available for other routines.

A more general mapping rule can be achieved by using a ROM to
specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping ROM. The contents of the
mapping ROM give the bits for the control address register.

The advantages of this mapping process are:

1. The microprogram routine that executes the instruction can be
placed in any desired location in control memory.

2. It provides flexibility for adding new subroutines for new
instructions in the control memory as the need arises.

 Subroutines

Subroutines are programs that are used by other routine to
accomplish a particular task.

An example of these subroutines is the subroutine needed to
generate the effective address of the operand for an instruction. This
is common to all memory reference instructions.

A subroutine can be called from any point within the main body of
the microprogram.

Computer Architecture
 Programming the Basic Computer

8.3. Microprogram Example

When the configuration and the microprogrammed control unit of the
computer are established, the designer's task is to generate the
microcode for the control memory. This code generation is called
microprogramming.

 Computer Configuration

To explain the microprogramming process, we present a simple
digital computer similar but not identical to the basic computer
introduced in chapter 6.

Figure 8.4 shows the block diagram of this computer.

F igure 8.4

Computer Architecture
 Programming the Basic Computer

 This computer consists of:
1. A main memory (2048 × 16) for storing instructions and data.
2. A control memory (128 × 20) for storing the microprogram.
3. Four registers associated with the processor unit; there

function is similar to the corresponding registers in the basic
computer introduced in chapter 6. These registers are :

a. The Accumulator Register (AC).
b. The Program Counter Register (PC).
c. The Address Register (AR).
d. The Data Register (DR).

4. Two registers associated with control unit:
a. The Subroutine Register (SBR).

b. The Control Address Register (CAR).

5. The Arithmetic Logic and Shift Unit.
6. Two multiplexers for transfer of information among the registers

and the registers and main memory.
From the diagram, it's clear that DR can receive information from AC,
PC, or main memory. AR can receive information either from PC or DR.
PC receives information from AR only. The arithmetic, logic, and shift
unit performs microoperations with data from AC and DR and places the
result in AC. The memory receives its address from AR. Data written to
memory comes from DR, while DR receives the data read from
memory.

I nstruction Format

Figure 8.5 presents the instruction format for the assumed computer.

The instruction format consists of three fields:

1. The 1-bit field specified for addressing mode symbolized by I.
2. The 4-bit field specified for operation code (Opcode).

3. The 11-bit field specified for the address.

F igure 8.5

	8.1. Introduction
	1. Hardwired Control Unit
	2. Microprogrammed Control Unit
	1. The main memory
	2. The control memory
	Depending on the sequencer inputs, the address of the next microinstruction can be specified in several ways:

	8.2. Address Sequencing
	1. Incrimination of the control address register.

	Conditional Branching
	In every digital system, the status conditions are special bits that provide parameter information such as:

	M apping of Instruction
	The advantages of this mapping process are:

	Subroutines
	Subroutines are programs that are used by other routine to accomplish a particular task.

	8.3. Microprogram Example
	Computer Configuration
	Figure 8.4 shows the block diagram of this computer.

	I nstruction Format
	The instruction format consists of three fields:

	F igure 8.5

